Sharp Inequalities for Maximal Functions Associated with General Measures
نویسنده
چکیده
Sharp weak type (1, 1) and L p estimates in dimension one are obtained for uncentered maximal functions associated with Borel measures which do not necessarily satisfy a doubling condition. In higher dimensions uncentered maximal functions fail to satisfy such estimates. Analogous results for centered maximal functions are given in all dimensions.
منابع مشابه
Maximal Inequalities for Associated Random Variables
In a celebrated work by Shao [13] several inequalities for negatively associated random variables were proved. In this paper we obtain some maximal inequalities for associated random variables. Also we establish a maximal inequality for demimartingales which generalizes and improves the result of Christofides [4].
متن کاملWeighted Rearrangement Inequalities for Local Sharp Maximal Functions
Several weighted rearrangement inequalities for uncentered and centered local sharp functions are proved. These results are applied to obtain new weighted weak-type and strong-type estimates for singular integrals. A self-improving property of sharp function inequalities is established.
متن کاملSharp maximal inequalities and commutators on Morrey spaces with non-doubling measures
In this paper, related to RBMO, we prove the sharp maximal inequalities for the Morrey spaces with the measure μ satisfying the growth condition. As an application we obtain the boundedness of commutators for these spaces.
متن کاملSharp Weighted Bounds for Fractional Integral Operators
The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp bounds are obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal...
متن کاملDimension Dependency of the Weak Type (1, 1) Bounds for Maximal Functions Associated to Finite Radial Measures
We show that the best constants appearing in the weak type (1,1) inequalities satisfied by the centered Hardy-Littlewood maximal function associated to some finite radial measures, such as the standard gaussian measure, grow exponentially fast with the dimension.
متن کامل